
"The world of chemical events is like a stage on which scene after scene is enacted in a continuous succession. The players on this stage are the elements. To each of them is assigned a characteristic role, either that of supernumerary or that of an actor playing a part." Clemens Alexander Winkler, 1897
"Almost all the chemical processes which occur in nature ... take place between sub-stances in solution."

Friedrich Wilhelm Ostwald, 1890 (Nobel Prize for Chemistry in 1909 "in recognition of his work on catalysis and ... investigations into the fundamental principles governing chemical equilibria and rates of reaction".)

Z 4.4 Types of Chemical Reactions

dissolution reactions (solvent, solute)

chemical reaction where two (or more) substances form a homogeneous mixture; dispersion is on the level of individual molecules or ions; size of dispersed particles generally $<10^{-9} \mathrm{~m}$ (nanometer)

precipitation reactions

chemical reaction where one substance exceeds its solubility in another so that it separates out of solution as a solid

acid-base reactions

"classic" Arrhenius reaction in water of a strong acid and a strong base reacting to form a salt and water

oxidation-reduction reactions

chemical reaction where electrons are transferred

Z 4.1-4.2 Dissolution Reactions

solubility - largest amount of substance that can dissolve in a given amount of solvent at a given T
molecular compounds in water (e.g., solid urea dissolving)

$$
\mathrm{H}_{2} \mathrm{NCONH}_{2}(\mathrm{~s}) \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{NCONH}_{2}(\mathrm{aq})
$$

ionic compounds in water (dissociation, ionization)

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{-}(\mathrm{aq})
$$

water is polar, often dissolves ions: "like dissolves like" electrolytes (conduct electricity better than pure water)
strong: $\mathrm{Na}_{2} \mathrm{CO}_{3}(a q), \mathrm{HCl}(a q)$
weak (produce less ions => lower conductivity):
ammonia, acetic acid
nonelectrolyte: ethanol, sugar
ethanol is polar

FIG I - Dissolution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in Water

FIG II - Dissolution of NaCl in Water

H 1-2; Z 4.3 Composition of Solutions
solute solvent solution mass percent mole fraction, X molarity, M
molality, m

(b)
a) volumetric (transfer) pipet - last drop does not drain out
b) measuring (Mohr) pipet
molarity - number of moles of solute per liter of solution (measuring atoms in solution)

EX 1. What is the molarity of the solution which contains 5.00 g of HCl in 200 mL of solution? $(\mathrm{M} \mathrm{HCl}=$ $36.4609 \mathrm{~g} \mathrm{~mol}^{-1}$)

EX 2. What is the molarity of pure water? $\left(M_{H 2 O}=18.0152 \mathrm{~g} \mathrm{~mol}^{-1}, d=1.00 \mathrm{~g} \mathrm{~cm}^{-3}\right)$

EX 3. What mass of silver nitrate is needed to make $100 . \mathrm{mL}$ of a $0.100{\mathrm{M} \mathrm{AgNO}_{3} \text { solution? }\left(\mathrm{MAgNO}_{3}=\right.}^{\text {a }}$ $169.874 \mathrm{~g} \mathrm{~mol}^{-1}$)

(a)

(b)

(c)

Diluting/Mixing Solutions

number of moles do not change
$n_{1}=M_{1} V_{1}=M_{2} V_{2}=n_{2}$

EX 4. What is the molarity of the solution prepared by adding 29.0 mL of 17.4 M acetic acid to a $500-\mathrm{mL}$ volumetric and filling to the mark with distilled water?

EX 5. How would you prepare 1.5 L of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ from a 16 M supply?

EX 6. What is the molarity of the sodium chloride solution obtained from mixing 53 mL of 0.52 M NaCl with 62 mL of 0.47 M NaCl ?

Density in Molarity Calculations

EX 7. A solution which is 5.50% (by mass) sulfuric acid $(M=98.0778)$ has a density of $1.0352 \mathrm{~g} \mathrm{~cm}^{-3}$. What is the molarity of the solution?

Z 4.5-4.6, 4.8 Precipitation Reactions (omit 4.7 for now, will do these types of problems when we have the equilibrium constant for solubility, $K_{\text {sp }}$)

(or WHY YOU NEED TO KNOW YOUR IONS)

STRATEGY (do not memorize solubility tables)

- write down formulas of reactants
- identify nature of reactants in solution (if ionic, what ions are in solution)
- consult solubility table for any combination of cations/anions that will precipitate
- write balanced equation
- write total ionic equation
- write net ionic equation - omits spectator ions
for example: if aqueous solutions of sodium chloride and silver nitrate were mixed, the solubility table identifies silver chloride as an insoluble species so
balanced equation:

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

total ionic equation:

$$
\begin{aligned}
& \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \\
& \quad \mathrm{AgCl}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned}
$$

net ionic equation (contains the CHEMISTRY):

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

Species present

Write the reaction

Balanced net ionic equation

Determine moles of reactants

Identify limiting reactant

Determine moles of products

Check units of products

EX 8. Aqueous solutions of iron(III) bromide and potassium sulfide are mixed. Write a net ionic equation for the reaction.

EX 9. Aqueous solutions of sodium hydroxide and magnesium chloride are mixed. Write a net ionic equation for the reaction.

Z 4.9 Acid-Base Reactions: Properties of Acids and Bases

Arrhenius acids - produce $\mathrm{H}^{+}(\mathrm{aq})$ ions upon dissolution in water

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Arrhenius bases - produce $\mathrm{OH}^{-}(\mathrm{aq})$ ions upon dissolution in water

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

seven strong acids to know	soluble strong bases to know		
hydrochloric acid	HCl	lithium hydroxide	LiOH
hydrobromic acid	HBr	sodium hydroxide	NaOH
hydroiodic acid	HI	potassium hydroxide	KOH
perchloric acid	HClO_{4}	rubidium hydroxide	RbOH
chloric acid	HClO_{3}	cesium hydroxide	CsOH
sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	barium hydroxide	$\mathrm{Ba}(\mathrm{OH})_{2}$
nitric acid	HNO_{3}		

Arrhenius definition works since pure water ionizes to a very small extent in a process called autoionization

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

so water is both an Arrhenius acid and an Arrhenius base. A substance having both acidic and basic properties is called amphoteric.
neutralization - reaction of an Arrhenius acid with an Arrhenius base to form a salt (ionic compound not containing OH^{-}) and water; driving force is the formation of stable, low energy water

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)
$$

species present:
omit spectator ions:

$$
\text { net ionic equation: } \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)
$$

weak acids are not strong electrolytes like the strong acids, e.g., organic acids (contain COOH group) like acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$, though they neutralize strong bases - leave H undissociated when writing. We will examine weak acids rather thoroughly in Chapter 7.

EXPANDED DEFINITIONS

Arrhenius bases (modified definition) - increase concentration of OH^{-} above that present in pure water by reacting with water; so for the weak base ammonia

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Arrhenius acids (modified definition) - increase concentration of H^{+}above that present in pure water by reacting with water

Species present

Write the reaction

Balanced net ionic equation

Determine moles of reactants Identify limiting reactant

Determine moles of products

Check units of products
acid and base anhydrides - modified definitions allow the binary oxides of the nonmetals (generally covalent) to be recognized as acids and those of the metals (generally ionic) as bases
$\mathrm{SO}_{3}(g)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})-\mathrm{H}_{2} \mathrm{O}^{\prime} \rightarrow \mathrm{BaO}(\mathrm{s})$
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})$
$2 \mathrm{HNO}_{3}(\mathrm{aq})-\mathrm{H}_{2} \mathrm{O}^{\prime} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
$2 \mathrm{HBrO}_{4}(\mathrm{aq})-\mathrm{H}_{2} \mathrm{O}^{\prime} \rightarrow \mathrm{Br}_{2} \mathrm{O}_{7}(\mathrm{~g})$

- to find acid add ' $\mathrm{H}_{2} \mathrm{O}$ ' to formula of nonmetal oxide
- to find base add ' $\mathrm{H}_{2} \mathrm{O}$ ' to formula of metal oxide
- to find acid anhydride subtract enough ' $\mathrm{H}_{2} \mathrm{O}$ ' from formula of acid to remove all hydrogens
- to find base anhydride subtract enough ' $\mathrm{H}_{2} \mathrm{O}$ ' from formula of base to remove all hydrogens

	I	II	III	IV	V	VI	VII
	$\mathbf{L i}_{2} \mathrm{O}$	BeO	$\mathrm{B}_{2} \mathrm{O}_{3}$	CO_{2}	$\mathrm{N}_{2} \mathrm{O}_{5}$	$\left(\mathrm{O}_{2}\right)$	OF_{2}
	$\mathrm{Na}_{2} \mathrm{O}$	$\mathbf{M g O}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}	$\mathrm{P}_{4} \mathrm{O}_{10}$	SO_{3}	$\mathrm{Cl}_{2} \mathrm{O}_{7}$
	$\mathrm{K}_{2} \mathrm{O}$	CaO	$\mathrm{Ga}_{2} \mathrm{O}_{3}$	GeO_{2}	$\mathrm{As}_{2} \mathrm{O}_{5}$	SeO_{3}	$\mathrm{Br}_{2} \mathrm{O}_{7}$
	$\mathrm{Rb}_{2} \mathrm{O}$	SrO	$\mathbf{I n}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$	SnO_{2}	$\mathrm{Sb}_{2} \mathrm{O}_{5}$	TeO_{5}	$\mathrm{I}_{2} \mathrm{O}_{7}$
\downarrow	$\mathrm{Cs}_{2} \mathrm{O}$	BaO	$\mathrm{Tl}_{2} \mathrm{O}_{3}$	$\mathbf{P b O}_{2}$	$\mathrm{Bi}_{2} \mathrm{O}_{5}$	PoO_{3}	$\mathrm{At}_{2} \mathrm{O}_{7}$

Z 2.9 Nomenclature of Nonmetallic Compounds Containing Hydrogen

H-Nonmetal	H-Oxyanion
Rule 1: (without the presence of $\mathrm{H}_{2} \mathrm{O}$) hydrogen _ide	Rule 1: (without the presence of $\mathbf{H}_{2} \mathrm{O}$) hydrogen hypo_ite hydrogen _ite
Examples:	hydrogen _ate
HCl hydrogen chloride	hydrogen per_ate
HF hydrogen fluoride	
$\mathrm{H}_{2} \mathrm{~S}$ hydrogen sulfide	Rule 2:
$\mathrm{H}_{2} \mathrm{Se}$ hydrogen selenide	(HO acids, when dissolved in $\mathrm{H}_{2} \mathrm{O}$) hypo_ous acid
Rule 2:	_ous acid ic acid
hydro_ic acid	per_ic acid
Examples:	Examples:
HCl hydrochloric acid	HClO hypochlorous acid
HF hydrofluoric acid	HClO_{2} chlorous acid
$\mathrm{H}_{2} \mathrm{~S}$ hydrosulfuric acid	HClO_{3} chloric acid
$\mathrm{H}_{2} \mathrm{Se}$ hydroselenic acid	HClO_{4} perchloric acid HNO_{2} nitrous acid
Comment:	HNO_{3} nitric acid
(a) These H-containing compounds are named	$\mathrm{H}_{2} \mathrm{SO}_{3}$ sulfurous acid
as if they were ionic. (b) Often the (aq) in the	$\mathrm{H}_{2} \mathrm{SO}_{4}$ sulfuric acid
formulas of the acids is omitted when it is obvious from the context that they are acids.	$\mathrm{H}_{3} \mathrm{PO}_{4}$ phosphoric acid

Reactions of Acids and Bases: ACID + BASE \rightarrow SALT + WATER chemistry contained in net ionic equation (or WHY YOU NEED TO KNOW YOUR IONS)

H 7-1-7-2; Z 4.9 Acid-Base Titrations

- balanced equation
- concentrations
- end-point = equivalence point
acid/base titrations

(a)

(b)

(c)

The Phenolphthalein End-Point
reading a meniscus

EX 10. A 25.0 mL sample of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ requires 28.33 mL of 0.953 M NaOH to reach the phenophthalein end-point. What is the concentration of acetic acid?

EX 11. 0.6135 g of potassium acid phthalate (KHP, $M=204.22 \mathrm{~g} / \mathrm{mol}$) that has been dissolved in water requires 37.65 mL of an NaOH solution to reach the phenolphthalein end-point. What is the molarity of the base?

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq}) \rightarrow \mathrm{NaKC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(I)
$$

Z 4.10 Oxidation-Reduction Reactions

"classic" oxidation (combining with oxygen)

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)
$$

"classic" reduction (combining with hydrogen)

$$
\mathrm{Ca}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaH}_{2}(\mathrm{~s})
$$

many other reactions also involve redox

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

Identifying Redox Reactions

species that is oxidized (reducing agent) species that is reduced (oxidizing agent)

oxidation numbers (in order of priority)

- Sum of the oxidation numbers (ON) of the atoms is zero for a neutral molecule and is the charge for an ion.
- Group I ON = 1, Group II ON = 2, Group III usually have $\mathrm{ON}=3$.
- Fluorine $\mathrm{ON}=-1$ always. Other halogens usually have $\mathrm{ON}=-1$ except in compounds with oxygen or other halogens when the oxidation number follows electronegativity and can be positive.
- Hydrogen has $\mathrm{ON}=1$ except in metal hydrides when the oxidation number is -1 .
- Oxygen has $\mathrm{ON}=-2$ except in compounds with fluorine when the oxidation number can be positive and in compounds containing the $\mathrm{O}-\mathrm{O}$ bond. For peroxides $\left(\mathrm{O}_{2}{ }^{2-}\right) \mathrm{ON}=-1$

EX 12. Assign oxidation numbers (ON) to all of the elements in the following chemical compounds.

NaCl	ClO^{-}	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	KMnO_{4}	$\mathrm{H}_{2} \mathrm{O}_{2}$
SO_{2}	I_{2}	CaH_{2}	CH_{4}	$\mathrm{~K}_{2} \mathrm{O}$

EX 13. Assign oxidation numbers (ON) to the chlorine atom in the following acidic oxides.
oxide
$\mathrm{Cl}_{2} \mathrm{O}$
$\mathrm{Cl}_{2} \mathrm{O}_{3}$
$\mathrm{Cl}_{2} \mathrm{O}_{5}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}$
HClO_{4}

EX 14. The alkali metals react with water, evolving hydrogen gas.

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(g)
$$

What is being oxidized, what is being reduced, and how many moles of electrons are transferred?

EX 15. For the following redox reaction what is the oxidizing agent, what is the reducing agent, and how many moles of electrons are transferred?

$$
\mathrm{Si}_{3} \mathrm{~N}_{4}(\mathrm{~s})+4 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{~N}_{2} \mathrm{O}(g)
$$

Z 4.11 Steps in Balancing Redox Equations by Half-Reaction Method

Basically two ways to balance:

1. start with electrons in halfreactions determined from oxidation numbers

OR
2. use electrons to balance charge after all elements balanced

Add OH^{-}to both sides of equation (equal to H^{+})

Form $\mathrm{H}_{2} \mathrm{O}$ on the side containing H^{+}and OH^{-}ions

Eliminate number of $\mathrm{H}_{2} \mathrm{O}$
appearing on both sides
Check that elements and charges are balanced
*add these steps for a basic reaction

EX 16. Balance in acidic solution

$$
\mathrm{MnO}_{4}^{-}(a q)+\mathrm{Fe}^{2+}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{Fe}^{3+}(a q)
$$

EX 17. Balance in basic solution

$$
\mathrm{Ag}(s)+\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})
$$

disproportionation (H box p. 124, Z p. 768)

```
3 HNO2 }->\mp@subsup{HNNO}{3}{+}+2NO+\mp@subsup{\textrm{H}}{2}{}\textrm{O
```

H 16-4-16-6; Z 4.12 Oxidation-Reduction Titrations
common reagents for analytical redox titrations: permanganate, MnO_{4}^{-}; dichromate, $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$; and ceric, Ce^{4+}

EX 18. How many moles of $\mathrm{CH}_{2} \mathrm{O}$ form when 37 mL of $0.52 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ reacts with excess $\mathrm{CH}_{3} \mathrm{OH}$ according to

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{CH}_{3} \mathrm{OH} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{CH}_{2} \mathrm{O}+7 \mathrm{H}_{2} \mathrm{O}
$$

EX 19. The iron in a 1.026 g sample of ore is quantitatively all converted to $\mathrm{Fe}(\mathrm{II})$ and then titrated with $0.0195 \mathrm{M} \mathrm{KMnO}_{4}$. If 24.35 mL is required to reach the endpoint what is the mass percent iron in the ore? ($M=55.845 \mathrm{~g} / \mathrm{mol}$)

$$
\mathrm{MnO}_{4}^{-}(a q)+5 \mathrm{Fe}^{2+}(a q)+8 \mathrm{H}^{+}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)+5 \mathrm{Fe}^{3+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

