CHEMICAL RXS, STOICHIOMETRY Z Ch 2.9, 4, H Ch 1-2, 7-1-7-2, 16-4-16-6

"The world of chemical events is like a stage on which scene after scene is enacted in a continuous succession. The players on this stage are the elements. To each of them is assigned a characteristic role, either that of supernumerary or that of an actor playing a part." Clemens Alexander Winkler, 1897

"Almost all the chemical processes which occur in nature ... take place between sub-stances in solution." Friedrich Wilhelm Ostwald, 1890 (Nobel Prize for Chemistry in 1909 "in recognition of his work on catalysis and ... investigations into the fundamental principles governing chemical equilibria and rates of reaction".)

Z 4.4 Types of Chemical Reactions

dissolution reactions (solvent, solute)

chemical reaction where two (or more) substances form a homogeneous mixture; dispersion is on the level of individual molecules or ions; size of dispersed particles generally $< 10^{-9}$ m (nanometer)

precipitation reactions

chemical reaction where one substance exceeds its solubility in another so that it separates out of solution as a solid

acid-base reactions

"classic" Arrhenius reaction in water of a strong acid and a strong base reacting to form a salt and water

oxidation-reduction reactions

chemical reaction where electrons are transferred

Z 4.1-4.2 Dissolution Reactions

solubility - largest amount of substance that can dissolve in a given amount of solvent at a given T

molecular compounds in water (e.g., solid urea dissolving)

 $H_2NCONH_2(s) \rightarrow H_2NCONH_2(aq)$

ionic compounds in water (dissociation, ionization)

 $Na_2CO_3(s) \rightarrow 2Na^+(aq) + CO_3^-(aq)$

water is polar, often dissolves ions: "like dissolves like"

electrolytes (conduct electricity better than pure water)

strong: Na₂CO₃(aq), HCI(aq)

weak (produce less ions => lower conductivity): ammonia, acetic acid

nonelectrolyte: ethanol, sugar

water is polar - unequal charge distribution

FIG I – Dissolution of K₂SO₄ in Water

ent solution	
mole fraction, X	(a)
mola l ity, <i>m</i>	(<i>b</i>)
	ent solution mole fraction, <i>X</i> mola l ity, <i>m</i>

a) volumetric (transfer) pipet - last drop does not drain out b) measuring (Mohr) pipet

molarity - number of moles of solute per liter of solution (measuring atoms in solution)

EX 1. What is the molarity of the solution which contains 5.00 g of HCI in 200 mL of solution? (M_{HCI} = 36.4609 g mol⁻¹)

EX 2. What is the molarity of pure water? ($M_{H2O} = 18.0152 \text{ g mol}^{-1}$, $d = 1.00 \text{ g cm}^{-3}$)

EX 3. What mass of silver nitrate is needed to make 100. mL of a 0.100 M AgNO₃ solution? ($M_{AgNO3} = 169.874 \text{ g mol}^{-1}$)

Diluting/Mixing Solutions

number of moles do not change

$$n_1 = M_1 V_1 = M_2 V_2 = n_2$$

EX 4. What is the molarity of the solution prepared by adding 29.0 mL of 17.4 M acetic acid to a 500-mL volumetric and filling to the mark with distilled water?

EX 5. How would you prepare 1.5 L of 0.10 M H₂SO₄ from a 16 M supply?

EX 6. What is the molarity of the sodium chloride solution obtained from mixing 53 mL of 0.52 M NaCl with 62 mL of 0.47 M NaCl?

Density in Molarity Calculations

EX 7. A solution which is 5.50% (by mass) sulfuric acid (M = 98.0778) has a density of 1.0352 g cm⁻³. What is the molarity of the solution?

Z 4.5-4.6, 4.8 Precipitation Reactions (omit 4.7 for now, will do these types of problems when we have the equilibrium constant for solubility, K_{sp})

(or WHY YOU NEED TO KNOW YOUR IONS)

STRATEGY (do not memorize solubility tables)

- write down formulas of reactants
- identify nature of reactants in solution (if ionic, what ions are in solution)
- · consult solubility table for any combination of cations/anions that will precipitate
- write balanced equation
- write total ionic equation
- · write net ionic equation omits spectator ions

for example: if aqueous solutions of sodium chloride and silver nitrate were mixed, the solubility table identifies silver chloride as an insoluble species so

balanced equation:

$$NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

total ionic equation:

$$Na^{+}(aq) + CI^{-}(aq) + Ag^{+}(aq) + NO_{3}^{-}(aq) \rightarrow AgCI(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$$

net ionic equation (contains the CHEMISTRY):

 $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

TABLE 4-1			
S	olubilities of Ionic Con	npounds in Water	
Anion	Soluble ^a	Slightly Soluble	Insoluble
NO ₃ ⁻ (nitrate)	All	_	_
ClO_3^- (chlorate)	All	—	_
ClO ₄ ⁻ (perchlorate)	Most	KClO ₄	—
CH ₃ COO ⁻ (acetate)	Most	—	Be(CH ₃ COO) ₂
F ⁻ (fluoride)	Group I, AgF, BeF ₂	SrF ₂ , BaF ₂ , PbF ₂	MgF ₂ , CaF ₂
Cl ⁻ (chloride)	Most	PbCl ₂	AgCl, Hg ₂ Cl ₂
Br ⁻ (bromide)	Most	PbBr ₂ , HgBr ₂	AgBr, Hg ₂ Br ₂
I ⁻ (iodide)	Most		AgI, Hg ₂ I ₂ ,
			PbI ₂ , HgI ₂
SO_4^{2-} (sulfate)	Most	CaSO ₄ , Ag ₂ SO ₄ ,	SrSO ₄ , BaSO ₄ ,
		Hg_2SO_4	$PbSO_4$
S ²⁻ (sulfide)	Groups I and II		Most
	$(NH_4)_2S$		
CO_3^{2-} (carbonate)	Group I, (NH ₄) ₂ CO ₃	_	Most
SO_3^{2-} (sulfite)	Group I, (NH ₄) ₂ SO ₃		Most
PO ₄ ³⁻ (phosphate)	Group I, (NH ₄) ₃ PO ₄	Li ₃ PO ₄	Most
OH ⁻ (hydroxide)	Group I, Ba(OH) ₂	Sr(OH) ₂ , Ca(OH) ₂	Most

^aSoluble compounds have solubilities exceeding 1 g/100 g water. Slightly soluble compounds have solubilities between 0.01 and 1 g/100 g; insoluble compounds have solubilities less than 0.01 g/100 g at room temperature.

EX 8. Aqueous solutions of iron(III) bromide and potassium sulfide are mixed. Write a net ionic equation for the reaction.

EX 9. Aqueous solutions of sodium hydroxide and magnesium chloride are mixed. Write a net ionic equation for the reaction.

Z 4.9 Acid-Base Reactions: Properties of Acids and Bases

Arrhenius acids - produce H⁺(aq) ions upon dissolution in water

 $HCl(aq) \rightarrow H^+(aq) + OH^-(aq)$

Arrhenius bases - produce OH⁻(aq) ions upon dissolution in water

 $Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2 OH^{-}(aq)$

seven strong acids to know		soluble strong bases to know		
hydrochloric acid	HCI	lithium hydroxide	LiOH	
hydrobromic acid	HBr	sodium hydroxide	NaOH	
hydroiodic acid	HI	potassium hydroxide	КОН	
perchloric acid	HCIO ₄	rubidium hydroxide	RbOH	
chloric acid	HCIO ₃	cesium hydroxide	CsOH	
sulfuric acid	H_2SO_4	barium hydroxide	Ba(OH) ₂	
nitric acid	HNO ₃			

Arrhenius definition works since pure water ionizes to a very small extent in a process called autoionization

 $H_2O(aq) \rightarrow H^+(aq) + OH^-(aq)$

so water is both an Arrhenius acid and an Arrhenius base. A substance having both acidic and basic properties is called **amphoteric**.

neutralization - reaction of an Arrhenius acid with an Arrhenius base to form a **salt** (**ionic compound not containing OH**⁻) and water; driving force is the formation of stable, low energy water

 $NaOH(aq) + HCI(aq) \rightarrow NaCI(aq) + H_2O(l)$

species present:

omit spectator ions:

net ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

weak acids are not strong electrolytes like the strong acids, *e.g.*, organic acids (contain COOH group) like acetic acid, $CH_3COOH(aq)$, though they neutralize strong bases – leave H undissociated when writing. We will examine weak acids rather thoroughly in Chapter 7.

EXPANDED DEFINITIONS

Arrhenius bases (modified definition) – increase concentration of OH^- above that present in pure water by reacting with water; so for the weak base ammonia

$$NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$$

Arrhenius acids (modified definition) - increase concentration of H⁺ above that present in pure water by reacting with water

acid and **base anhydrides** - modified definitions allow the binary oxides of the nonmetals (generally covalent) to be recognized as acids and those of the metals (generally ionic) as bases

- $SO_{3}(g) + H_{2}O \rightarrow H_{2}SO_{4}(aq)$ $P_{4}O_{10}(s) + 6 H_{2}O \rightarrow 4 H_{3}PO_{4}(aq)$ $Ba(OH)_{2}(s) 'H_{2}O' \rightarrow BaO(s)$ $Na_{2}O(s) + H_{2}O \rightarrow 2 NaOH(aq)$ $2 HNO_{3}(aq) 'H_{2}O' \rightarrow N_{2}O_{5}(g)$ $2 HBrO_{4}(aq) 'H_{2}O' \rightarrow Br_{2}O_{7}(g)$
- to find acid add 'H₂O' to formula of nonmetal oxide
- to find base add 'H_2O' to formula of metal oxide
- to find acid anhydride subtract enough 'H_2O' from formula of acid to remove all hydrogens
- to find base anhydride subtract enough 'H₂O' from formula of base to remove all hydrogens

city	I	II	III	IV	V	VI	VII	
ig basi	Li ₂ O	BeO	B ₂ O ₃	CO ₂	N ₂ O ₅	(O ₂)	OF ₂	
reasin	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO3	Cl ₂ O ₇	ity
- Inc	K ₂ O	CaO	Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇	g acid
	Rb ₂ O	SrO	In ₂ O ₃	SnO ₂	Sb ₂ O ₅	TeO ₅	I ₂ O ₇	reasin
Ψ	Cs ₂ O	BaO	Tl ₂ O ₃	PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇	Inc

Increasing acidity _____

——— Increasing basicity

Z 2.9 Nomenclature of Nonmetallic Compounds Containing Hydrogen

H-Nonmetal	H-Oxyanion		
Rule 1:	Rule 1:		
(without the presence of H_2O)	(without the presence of H_2O)		
hydrogen _ide	hydrogen hypo_ite		
	hydrogen _ite		
Examples:	hydrogen _ate		
HCI hydrogen chloride	hydrogen per_ate		
HF hydrogen fluoride			
H ₂ S hydrogen sulfide	Rule 2:		
H ₂ Se hydrogen selenide	(HO acids, when dissolved in H ₂ O)		
	hypo_ous acid		
Rule 2:	_ous acid		
(H acids, when dissolved in H ₂ O)	_ic acid		
hydro_ic acid	per_ic acid		
Energy land	Even we have		
Examples:	Examples:		
HCI hydrochioric acid	HCIO nypochiorous acid		
HF nydronuoric acid	$HCIO_2$ chlorid acid		
H_2S hydrogelenic acid	$HCIO_3$ chioric acid		
H ₂ Se hydroselenic acid	HOO_4 perchionic acid		
Commont	HNO_2 fillious acid		
(a) These H containing compounds are normed	H SO suffurnus sold		
(a) These H-containing compounds are named	H_2SO_3 sulfurious acid		
as it they were ionic. (b) Often the (aq) in the	$\Pi_2 = 0.4$ summer actor		
iornulas of the actos is omitted when it is	$\square_3 \square_4$ phosphone acid		
obvious from the context that they are acids.			

Reactions of Acids and Bases: ACID + BASE \rightarrow SALT + WATER

chemistry contained in net ionic equation (or WHY YOU NEED TO KNOW YOUR IONS)

ACIDS react with	BASES react with
1. bases to yield s	1. acids salt and water
$2 \text{ HBr}(aq) + \text{Ba}(\text{OH})_2(a)$	$aq) \rightarrow BaBr_2(aq) + 2 H_2O(l)$
H+(<i>aq</i>) + OI	$H^{-}(aq) \rightarrow H_2O(I)$
2. metal oxides (not main group) to yi	2. nonmetal oxides eld salt and water
$2 \text{ HCl}(aq) + \text{MnO}(s) \rightarrow \\ \text{MnCl}_2(aq) + \text{H}_2\text{O}(l)$	$2 \operatorname{NaOH}(aq) + \operatorname{Cl}_2\operatorname{O}_5(g) \rightarrow$ 2 NaClO ₃ (aq) + H ₂ O(<i>l</i>)
$2 H^+(aq) + MnO(s) \rightarrow Mn^{2+}(aq) + H_2O(l)$	$2 \text{ OH}^{-}(aq) + \text{Cl}_2\text{O}_5(g) \rightarrow 2 \text{ ClO}_3^{-}(aq) + \text{H}_2\text{O}(I)$
3. carbonates hydrogen carbonates to vield s	3. ammonium salts
+ CO ₂ (g)	+ NH ₃ (<i>g</i>)
$\begin{array}{rcl} H_2 \mathrm{SO}_4(aq) \ + \ Na_2 \mathrm{CO}_3(s) & \rightarrow \\ \mathrm{CO}_2(g) \ + \ Na_2 \mathrm{SO}_4(aq) \ + \ H_2 \mathrm{O}(\mathit{I}) \end{array}$	$\begin{array}{rcl} KOH(aq) \ + \ (NH_4)_2 SO_4(aq) \ \rightarrow \\ & 2 \ NH_3(g) \ + \ K_2 SO_4(aq) \ + \ 2 \ H_2 O(l) \end{array}$
$\begin{array}{rcl} 2 \ H^{\scriptscriptstyle +}(aq) \ + \ Na_2CO_3(s) & \rightarrow \\ & CO_2(g) \ + \ 2 \ Na^{\scriptscriptstyle +}(aq) \ + \ H_2O(\mathit{I}) \end{array}$	$OH^{-}(aq) + NH_{4}^{+}(aq) \rightarrow NH_{3}(g) + H_{2}O(I)$
 4. sulfites hydrogen sulfites to yield salt and water + SO₂(g) 	$\delta - \overset{\delta +}{\overset{\circ}{\underset{C}{=}}} \overset{\circ}{\underset{C}{=}} \overset{\circ}{\underset{\delta}{\overset{\circ}{\underset{D}{=}}}} \overset{\circ}{\underset{H}{\overset{\circ}{\underset{\lambda}{\underset{\lambda}{\leftarrow}}}}} \overset{\circ}{\underset{H}{\overset{\circ}{\underset{\lambda}{\leftarrow}}}} \overset{\circ}{\underset{H}{\overset{\circ}{\underset{\lambda}{\leftarrow}}}} \overset{\circ}{\underset{H}{\overset{\circ}{\underset{\lambda}{\leftarrow}}}}$
HNO ₃ (aq) + NaHSO ₃ (s) → SO ₂ (g) + NaNO ₃ (aq) + H ₂ O(l)	$ \overset{\circ}{\overset{\circ}{\underset{\scriptstyle \ominus}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle}{\underset{\scriptstyle}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle}}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle}{\atop\scriptstyle}{\atop\scriptstyle}}{\underset{\scriptstyle}{\atop\scriptstyle}}{\underset{\scriptstyle}{\underset{\scriptstyle}{\atop\scriptstyle}}{\underset{\scriptstyle}{\scriptstyle$
$H^+(aq)$ + NaHSO ₃ (s) → SO ₂ (g) + 2 Na ⁺ (aq) + H ₂ O(<i>I</i>)	$H \rightarrow H$ $H \rightarrow H$ $H \rightarrow H$ $H \rightarrow H$ $H \rightarrow H$ carbonic acid (H ₂ CO ₃) and sulfurous acid (H ₂ SO ₃) are unstable and decompose to CO ₂ and SO ₂ , respectively (reverse of above reaction)

The Phenolphthalein End-Point

reading a meniscus

EX 10. A 25.0 mL sample of acetic acid (CH₃COOH) requires 28.33 mL of 0.953 M NaOH to reach the phenophthalein end-point. What is the concentration of acetic acid?

EX 11. 0.6135 g of potassium acid phthalate (KHP, M = 204.22 g/mol) that has been dissolved in water requires 37.65 mL of an NaOH solution to reach the phenolphthalein end-point. What is the molarity of the base?

 $NaOH(aq) + KHC_8H_4O_4(aq) \rightarrow NaKC_8H_4O_4(aq) + H_2O(l)$

Z 4.10 Oxidation-Reduction Reactions

"classic" oxidation (combining with oxygen)

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$

"classic" reduction (combining with hydrogen)

$$Ca(s) + H_2(g) \rightarrow CaH_2(s)$$

many other reactions also involve redox

 $Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(s) + 3 CO_2(g)$

Identifying Redox Reactions

species that is oxidized (reducing agent) species that is reduced (oxidizing agent)

oxidation numbers (in order of priority)

• Sum of the oxidation numbers (**ON**) of the atoms is zero for a neutral molecule and is the charge for an ion.

• Group I ON = 1, Group II ON = 2, Group III usually have ON = 3.

• Fluorine ON = -1 **always**. Other halogens usually have ON = -1 except in compounds with oxygen or other halogens when the oxidation number follows electronegativity and can be positive.

• Hydrogen has ON = 1 except in metal hydrides when the oxidation number is -1.

• Oxygen has ON = -2 except in compounds with fluorine when the oxidation number can be positive and in compounds containing the O-O bond. For peroxides ($O_2^{2^-}$) ON = -1

EX 12. Assign o	oxidation numbers	s (ON) to all of the eleme	ents in the following	chemical compounds.
NaCl	CIO-	Fe ₂ (SO ₄) ₃	KMnO ₄	H ₂ O ₂
SO ₂	l ₂	CaH ₂	CH ₄	K ₂ O

EX 13. Assign oxidation numbers (ON) to the chlorine atom in the following acidic oxides.		
oxide	acid	
Cl ₂ O	HCIO	
Cl ₂ O ₃	HCIO ₂	
Cl ₂ O ₅	HCIO ₃	
Cl ₂ O ₇	HCIO ₄	

-10-

EX 14. The alkali metals react with water, evolving hydrogen gas.

$$2 \operatorname{Na}(s) + 2 \operatorname{H}_2 O(I) \rightarrow 2 \operatorname{NaOH}(aq) + \operatorname{H}_2(g)$$

What is being oxidized, what is being reduced, and how many moles of electrons are transferred?

EX 15. For the following redox reaction what is the oxidizing agent, what is the reducing agent, and how many moles of electrons are transferred?

 $Si_3N_4(s) + 4 O_2(g) \rightarrow 3 SiO_2(s) + 2 N_2O(g)$

EX 16. Balance in acidic solution

 $MnO_4^-(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq)$

EX 17. Balance in basic solution $Ag(s) + HS^{-}(aq) + CrO_{4}^{2-}(aq) \rightarrow Ag_{2}S(s) + Cr(OH)_{3}(s)$

disproportionation (H box p. 124, Z p. 768)

 $3 \text{ HNO}_2 \ \rightarrow \ \text{HNO}_3 \ + \ 2 \text{ NO} \ + \ \text{H}_2\text{O}$

H 16-4–16-6; Z 4.12 Oxidation-Reduction Titrations common reagents for analytical redox titrations: permanganate, MnO_{4^-} ; dichromate, $Cr_2O_7^{2^-}$; and ceric, Ce⁴⁺

EX 18. How many moles of CH₂O form when 37 mL of 0.52 M Cr_2O7^{2-} reacts with excess CH₃OH according to

 $Cr_2O_7{}^{2-} \ + \ 8 \ H^+ \ + \ 3 \ CH_3OH \ \rightarrow \ 2 \ Cr^{3+} \ \ + \ 3 \ CH_2O \ + \ 7 \ H_2O$

EX 19. The iron in a 1.026 g sample of ore is quantitatively all converted to Fe(II) and then titrated with 0.0195 M KMnO₄. If 24.35 mL is required to reach the endpoint what is the mass percent iron in the ore? (M = 55.845 g/mol)

 $MnO_{4^{-}}(aq) + 5 Fe^{2+}(aq) + 8 H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5 Fe^{3+}(aq) + 4 H_{2}O(I)$